Abstract:Graph neural networks have emerged as a potent class of neural networks capable of leveraging the connectivity and structure of real-world graphs to learn intricate properties and relationships between nodes. Many real-world graphs exceed the memory capacity of a GPU due to their sheer size, and using GNNs on them requires techniques such as mini-batch sampling to scale. However, this can lead to reduced accuracy in some cases, and sampling and data transfer from the CPU to the GPU can also slow down training. On the other hand, distributed full-graph training suffers from high communication overhead and load imbalance due to the irregular structure of graphs. We propose Plexus, a three-dimensional (3D) parallel approach for full-graph training that tackles these issues and scales to billion-edge graphs. Additionally, we introduce optimizations such as a permutation scheme for load balancing, and a performance model to predict the optimal 3D configuration. We evaluate Plexus on several graph datasets and show scaling results for up to 2048 GPUs on Perlmutter, which is 33% of the machine, and 2048 GCDs on Frontier. Plexus achieves unprecedented speedups of 2.3x-12.5x over existing methods and a reduction in the time to solution by 5.2-8.7x on Perlmutter and 7-54.2x on Frontier.
Abstract:We evaluate the current state of collective communication on GPU-based supercomputers for large language model (LLM) training at scale. Existing libraries such as RCCL and Cray-MPICH exhibit critical limitations on systems such as Frontier -- Cray-MPICH underutilizes network and compute resources, while RCCL suffers from severe scalability issues. To address these challenges, we introduce PCCL, a communication library with highly optimized implementations of all-gather and reduce-scatter operations tailored for distributed deep learning workloads. PCCL is designed to maximally utilize all available network and compute resources and to scale efficiently to thousands of GPUs. It achieves substantial performance improvements, delivering 6-33x speedups over RCCL and 28-70x over Cray-MPICH for all-gather on 2048 GCDs of Frontier. These gains translate directly to end-to-end performance: in large-scale GPT-3-style training, PCCL provides up to 60% and 40% speedups over RCCL for 7B and 13B parameter models, respectively.
Abstract:Industrial robots are widely used in diverse manufacturing environments. Nonetheless, how to enable robots to automatically plan trajectories for changing tasks presents a considerable challenge. Further complexities arise when robots operate within work cells alongside machines, humans, or other robots. This paper introduces a multi-level hybrid robot motion planning method combining a task space Reinforcement Learning-based Learning from Demonstration (RL-LfD) agent and a joint-space based Deep Reinforcement Learning (DRL) based agent. A higher level agent learns to switch between the two agents to enable feasible and smooth motion. The feasibility is computed by incorporating reachability, joint limits, manipulability, and collision risks of the robot in the given environment. Therefore, the derived hybrid motion planning policy generates a feasible trajectory that adheres to task constraints. The effectiveness of the method is validated through sim ulated robotic scenarios and in a real-world setup.
Abstract:Training and fine-tuning large language models (LLMs) with hundreds of billions to trillions of parameters requires tens of thousands of GPUs, and a highly scalable software stack. In this work, we present a novel four-dimensional hybrid parallel algorithm implemented in a highly scalable, portable, open-source framework called AxoNN. We describe several performance optimizations in AxoNN to improve matrix multiply kernel performance, overlap non-blocking collectives with computation, and performance modeling to choose performance optimal configurations. These have resulted in unprecedented scaling and peak flop/s (bf16) for training of GPT-style transformer models on Perlmutter (620.1 Petaflop/s), Frontier (1.381 Exaflop/s) and Alps (1.423 Exaflop/s). While the abilities of LLMs improve with the number of trainable parameters, so do privacy and copyright risks caused by memorization of training data, which can cause disclosure of sensitive or private information at inference time. We highlight this side effect of scale through experiments that explore "catastrophic memorization", where models are sufficiently large to memorize training data in a single pass, and present an approach to prevent it. As part of this study, we demonstrate fine-tuning of a 405-billion parameter LLM using AxoNN on Frontier.
Abstract:Scaling laws are typically fit using a family of models with a narrow range of frozen hyper-parameter choices. In this work we study scaling laws using a wide range of architecture and hyper-parameter choices, and highlight their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: the most comprehensive open-source scaling law dataset to date, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters; these models have been trained with different learning rates, cooldown schedules, and architectural shapes. Our checkpoints enable more complex studies of scaling, such as a law that predicts language modeling performance as a function of model width and depth. By examining the various facets of our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting. Code: https://github.com/mcleish7/gemstone-scaling-laws
Abstract:We study a novel language model architecture that is capable of scaling test-time computation by implicitly reasoning in latent space. Our model works by iterating a recurrent block, thereby unrolling to arbitrary depth at test-time. This stands in contrast to mainstream reasoning models that scale up compute by producing more tokens. Unlike approaches based on chain-of-thought, our approach does not require any specialized training data, can work with small context windows, and can capture types of reasoning that are not easily represented in words. We scale a proof-of-concept model to 3.5 billion parameters and 800 billion tokens. We show that the resulting model can improve its performance on reasoning benchmarks, sometimes dramatically, up to a computation load equivalent to 50 billion parameters.
Abstract:Large Language Model (LLM) based coding tools have been tremendously successful as software development assistants, yet they are often designed for general purpose programming tasks and perform poorly for more specialized domains such as high performance computing. Creating specialized models and tools for these domains is crucial towards gaining the benefits of LLMs in areas such as HPC. While previous work has explored HPC-specific models, LLMs still struggle to generate parallel code and it is not at all clear what hurdles are still holding back these LLMs and what must be done to overcome them. In this work, we conduct an in-depth study along the many axes of fine-tuning a specialized HPC LLM in order to better understand the challenges. Based on our findings we fine-tune and evaluate a specialized HPC LLM that is shown to be the best performing open-source code LLM for parallel code generation to date.
Abstract:We propose a novel method for evaluating the performance of a content search system that measures the semantic match between a query and the results returned by the search system. We introduce a metric called "on-topic rate" to measure the percentage of results that are relevant to the query. To achieve this, we design a pipeline that defines a golden query set, retrieves the top K results for each query, and sends calls to GPT 3.5 with formulated prompts. Our semantic evaluation pipeline helps identify common failure patterns and goals against the metric for relevance improvements.
Abstract:Mobile manipulators are finding use in numerous practical applications. The current issues with mobile manipulation are the large state space owing to the mobile base and the challenge of modeling high degree of freedom systems. It is critical to devise fast and accurate algorithms that generate smooth motion plans for such mobile manipulators. Existing techniques attempt to solve this problem but focus on separating the motion of the base and manipulator. We propose an approach using Lie theory to find the inverse kinematic constraints by converting the kinematic model, created using screw coordinates, between its Lie group and vector representation. An optimization function is devised to solve for the desired joint states of the entire mobile manipulator. This allows the motion of the mobile base and manipulator to be planned and applied in unison resulting in a smooth and accurate motion plan. The performance of the proposed state planner is validated on simulated mobile manipulators in an analytical experiment. Our solver is available with further derivations and results at https://github.com/peleito/slithers.
Abstract:Robotic tasks often require multiple manipulators to enhance task efficiency and speed, but this increases complexity in terms of collaboration, collision avoidance, and the expanded state-action space. To address these challenges, we propose a multi-level approach combining Reinforcement Learning (RL) and Dynamic Movement Primitives (DMP) to generate adaptive, real-time trajectories for new tasks in dynamic environments using a demonstration library. This method ensures collision-free trajectory generation and efficient collaborative motion planning. We validate the approach through experiments in the PyBullet simulation environment with UR5e robotic manipulators.